数学定数

数学定数とは、計算上特別な意味を持つ数値のことです。例えば、定数π(パイ)は、円の円周と直径の比を意味します。この値は、どの円でも常に同じです。数学的な定数は、しばしば実数の非積分数であり、興味深いものです。

物理定数とは対照的に、数学定数は物理的な測定から得られるものではない。

主要な数学定数

次の表は、重要な数学定数です。

名称

シンボルマーク

価値

意味

円周率、アルキメデス定数またはルドフ数

π

≈3.141592653589793

円の円周の長さと直径の比である超越的な数。また、単位円の面積でもある。

E, ネーピア定数

e

≈2.718281828459045

自然対数の底となる超越的な数で、「自然数」と呼ばれることもある。

黄金比

φ

5 + 1 2 ≈ 1.618 { {displaystyle} {}frac {{sqrt {5}}+1}{2}}approx 1.618} } }. {\displaystyle {\frac {{\sqrt {5}}+1}{2}}\approx 1.618}

これが値の合計を大きい値で割った値と等しい場合は、大きい値を小さい値で割った値となる。

2の平方根、ピタゴラス定数

2 {displaystyle { {sqrt {2}}}. {\displaystyle {\sqrt {2}}}

≈ 1.414 {displaystyle ˋ} {\displaystyle \approx 1.414}

辺の長さが1の正方形の対角線の長さを表す不合理な数。

定数・級数

数学における定数と級数の一覧表を、次の欄で示します。

  • 。定数の数値。
  • LaTeX。TeX形式の数式または系列。
  • 数式。Mathematica やWolfram Alpha等のプログラムで使用されます.
  • OEIS: On-Line Encyclopedia of Integer Sequences (OEIS)へのリンクで、定数の詳細を見ることができる。
  • 連続分数。単純形式 [整数へ;frac1, frac2, frac3, ...] (周期的な場合は括弧で囲む)
  • タイプです。
    • R - 有理数
    • I - 無理数
    • T - 超越数
    • C - 複素数

なお、表の上部にあるヘッダータイトルをクリックすると、その順番に並べることができます

価値

名称

シンボルマーク

ラテックス

タイプ

おうしゅうでんきつうしんひょうじゅんきょうかい

連続分数

3.24697960371746706105000976800847962

銀、ツチノコ定数

ς {displaystyle \varsigma }. {\displaystyle \varsigma }

2 + 2 cos ( 2 π / 7 ) = 2 + 2 + 7 + 7 + ⋯ 3 3 1 + 7 + 7 + 7 + ⋯ 3 3 {displaystyle 2+2cos(2 π / 7)=Textstyle 2+{}frac {2+{sqrt[{3}]{7+7{cathqrt[{3}]{7+7{sqrt[{3}]{Text.3}}}}} {3} {7{sqrt{{3}}{Text.3}}}} {3} {3] {3] {3] {3] {3] {3] {3] {7} {3] {7] {7] {7] {3}} {7] {7] {7] {7}} {7] {77+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}} {\displaystyle 2+2\cos(2\pi /7)=\textstyle 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}}

2+2 cos(2Pi/7)

T

A116425

[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]

1.09864196439415648573466891734359621

パリ定数

C P a {displaystyle C_{Pa}} {\displaystyle C_{Pa}}

∏ n = 2 ∞ 2 φ + φ n , φ = F i {displaystyle \prod _{n=2}^{infty }{frac {2varphi }{varphi +ả varphi _{n}};,\varphi ={Fi}}} {\displaystyle \prod _{n=2}^{\infty }{\frac {2\varphi }{\varphi +\varphi _{n}}}\;,\varphi ={Fi}}

I

A105415

[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]

2.74723827493230433305746518613420282

ラマヌジャンの入れ子ラジカルR 5

R 5 {displaystyle R_{5}}. {\displaystyle R_{5}}

5 + 5 + 5 - 5 + 5 + 5 - ⋯ = 2 + 5 + 15 - 6 5 2 {displaystyle \scriptstyle {5+{sqrt {5-{sqrt {5+{cdots}}}}}}}}}}}}}}}}}}=textstyle { {2+{CASQRT {5}}+{CASQRT {15-6{CASQRT {5}}}}{2}}} は、次のようになります。} {\displaystyle \scriptstyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;=\textstyle {\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}}

(2+sqrt(5)+sqrt(15-6 sqrt(5)))/2

I

[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]

2.23606797749978969640917366873127624

5の平方根ガウス

5 {displaystyle { {sqrt {5}}}. {\displaystyle {\sqrt {5}}}

n = 5 , ∑ k = 0 n - 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {displaystyle \scriptstyle \forall ⑷n=5,\displaystyle \sum _{k=0}^{n-1}e^{frac {2k^{2} ◇pi i}{n}}=1+e^{frac {2π i}{5}}+e^{frac {8π i}{5}+e^{frac {18π i}{5}}+e^{frac {32π i}{5}}} {{frac _{2π i}{5}}}+e^{frac _{2π i}{5}}} {displaystyle ╱displaystyle {\displaystyle \scriptstyle \forall \,n=5,\displaystyle \sum _{k=0}^{n-1}e^{\frac {2k^{2}\pi i}{n}}=1+e^{\frac {2\pi i}{5}}+e^{\frac {8\pi i}{5}}+e^{\frac {18\pi i}{5}}+e^{\frac {32\pi i}{5}}}

Sum[k=0 to 4]{e^(2k^2 pi i/5)}.

I

A002163

[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;(4),...]

3.62560990822190831193068515586767200

ガンマ(1/4)

Γ ( 1 4 ) {displaystyle \Gamma ({tfrac {1}{4}})} }. {\displaystyle \Gamma ({\tfrac {1}{4}})}

4 ( 1 4 ) != ( - 3 4 ) !{表示形式 4left({C1}{4})!=C1left(-C1}{3}{4})!} {\displaystyle 4\left({\frac {1}{4}}\right)!=\left(-{\frac {3}{4}}\right)!}

4(1/4)!

T

A068466

[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]

0.18785964246206712024851793405427323

MRBコンスタント、マーヴィン・レイ・バーンズ

C M R B {displaystyle C_{_{MRB}}} {displaystyle C_{_{MRB}}} </displaystyle {\displaystyle C_{_{MRB}}}

∑ n = 1 ∞ ( - 1 ) n ( n 1 / n - 1 ) = - 1 + 2 - 3 3 + 4 4 ... {displaystyle \sum _{n=1}^{infty }({-}1)^{n}(n^{1/n}{-}1)=-{sqrt[{1}]{1}+{sqrt[{2}}}-{sqrt[{3}]{3}}+{sqrt[{4}},\dots } }} ... {\displaystyle \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}\,\dots }

Sum[n=1 to ∞]{(-1)^n (n^(1/n)-1)}.

T

A037077

[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]

0.11494204485329620070104015746959874

ケプラーブーケンプ定数

ρ {displaystyle {rho }} {\displaystyle {\rho }}

∏ = 3 ∞ cos ( π n ) = cos ( π 3 ) cos ( π 4 ) cos ( π 5 ) ...である。{displaystyle \prod _{n=3}^{infty }}cos \left({}frac {}pi }{n}}right)=Cos \left({}frac {}pi }{3}}right){cos \left({}frac {}pi }{4}}right){dot }} ↘cos ↑left({}frac {}pi }{5}}right){cos \lフト{} {dot} ↑cos ({}frac{}π #4} ){cos {{5]pos { {{}pi {}right {{}pi {}right { {]pos {}right {\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)\dots }

prod[n=3〜∞]{cos(π/n)}とする。

T

A085365

[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]

1.78107241799019798523650410310717954

Exp(gamma)
Gバーンズ関数

e γ {displaystyle e^{gamma }} {\displaystyle e^{\gamma }}

∏ n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( - 1 ) k + 1 ( n k ) )1 n + 1 = {displaystyle \prod _{n=1}^{infty }{Thrac {e^{frac {1}{n}}}{1+{tfrac {1}{n}}}}=Thankelft(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}right)^{Thankelft {1}{n+1}}=} {DiamondProd_{tfrac}/tekfrac}}{1}{n+1}{n}{n}}{tfrac}/thankelフト}{tfrac_{n}}{n}{n}====={DiamondPROD{n}^{n}^{1}^{tfrac}/thankelフトの順に表示。 {\displaystyle \prod _{n=1}^{\infty }{\frac {e^{\frac {1}{n}}}{1+{\tfrac {1}{n}}}}=\prod _{n=0}^{\infty }\left(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}\right)^{\frac {1}{n+1}}=}

( 2 1 ) 1 / 2 ( 2 2 1 ⋅ 3 ) 1 / 3 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 / 4 ( 2 4 ⋅ 4 4 1 ⋅ 3 6 ⋅ 5 ) 1 / 5 ...{ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ2^{3}} 4}{1}}right)^{1/4}left({Cfrac {2^{4}} 4^{4}{1}} 3^{6}} 5}}right)^{1/5}dots } {Cfrac {2^{4}} {1}} 3^{3}{3}{3}}right}{{3}}ライト{{1/4}レフト {\displaystyle \textstyle \left({\frac {2}{1}}\right)^{1/2}\left({\frac {2^{2}}{1\cdot 3}}\right)^{1/3}\left({\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}\right)^{1/4}\left({\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}\right)^{1/5}\dots }

Prod[n=1 to ∞]{e^(1/n)}/{1 + 1/n}のようになります。

T

A073004

[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]

1.28242712910062263687534256886979172

グレーシャー-キンケリン定数

A {displaystyle {A}} {\displaystyle {A}}

e 1 12 - ζ ′ ( - 1 ) = e 1 8 - 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( - 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {displaystyle e^{{\frac {1}{12}}-zeta ^{\prime }(- 1 ) }=e^{ { 椎名桔梗 {1}{12}}-{ {}field {1}{8}}の和集合体1)}=e^{{prac {1}{8}}-{prac {1}{2}}sum \limits _{n=0}^{pinfty }{frac {1}{n+1}}sum \limits _{k=0}^{n}left(-1 translated)^{k}{binom {n}{k}Chetleft(k+1 translated)^{2}Philn(k+1)}} {prac {1}/{1}{2}}とする。 {\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\sum \limits _{n=0}^{\infty }{\frac {1}{n+1}}\sum \limits _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}\left(k+1\right)^{2}\ln(k+1)}}

e^(1/2-zeta´{-1})

T

A074962

[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]

7.38905609893065022723042746057500781

シュヴァルツシルト円錐定数

e 2 {displaystyle e^{2}}} {\displaystyle e^{2}}

∑ n = 0 ∞ 2 n n != 1 + 2 + 2 2 2 !+ 2 3 3 !+ 2 4 4 !+ 2 5 5 !+ ... {\displaystyle \sum _{n=0}^{infty }{frac {2^{n}}{n!}}=1+2+{frac {2^{2}}{2}+{frac {2^{3}}{3!}}+{frac {2^{4}}{4!}}+{frac {2^{5}}{5!}}+<dots }} {{frac{1^{4}}}{3!} }+{frac {2}{3}{4}}+{4}}+{frac}{5}}+<ドッツ {\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}}=1+2+{\frac {2^{2}}{2!}}+{\frac {2^{3}}{3!}}+{\frac {2^{4}}{4!}}+{\frac {2^{5}}{5!}}+\dots }

Sum[n=0 to ∞]{2^n/n!}

T

A072334

[7;2,1,3,18,5,1,6,30,8,1,9,42,11,1,...]
= [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc.。

1.01494160640965362502120255427452028

ジーセキング定数

G G i {G_{Gi}} {displaystyle {G_{Gi}}} {\displaystyle {G_{Gi}}}

3 3 4 ( 1 - ∑ n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {displaystyle {frac {3{sqrt {3}}{4}} {left(1-})\sum _{n=0}^{}infty }{frac {1}{(3n+2)^{2}}+theum _{n=1}^{infty }{frac {1}{(3n+1)^{2}}}right)=} {display style { {display style {{n=1}^{}} {frac {1}{(3n+2)^{2}}} {frac {1}{2}{2}}は矩形である。 {\displaystyle {\frac {3{\sqrt {3}}}{4}}\left(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}\right)=}

3 3 4 ( 1 - 1 2 2 + 1 4 2 - 1 5 2 + 1 7 2 - 1 8 2 + 1 10 2 ± ...) {displaystyle ■ {3{sqrt {3}}{4}}left(1-{frac {1}{2^{2}}+{frac {1}{4^{2}}}-{frac {1}{5^{2}}+{frac {1}{7^{2}}-{frac {1}{8^{2}}+{prac{1}{10^{2}})}} ■■ {1}{\displaystyle \textstyle {\frac {3{\sqrt {3}}}{4}}\left(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}+{\frac {1}{10^{2}}}\pm \dots \right)}

T

A143298

[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]

2.62205755429211981046483958989111941

レムニスカータ定数

ϖ {displaystyle {varpi }} {\displaystyle {\varpi }}

π G = 4 2 π ( 1 4 ! ) 2 {displaystyle \pi },{G}=4{sqrt { {}tfrac {2}{pi }},({}tfrac {1}{4}}!)^{2}}}. {\displaystyle \pi \,{G}=4{\sqrt {\tfrac {2}{\pi }}}\,({\tfrac {1}{4}}!)^{2}}

4 sqrt(2/pi) (1/4!)^2

T

A062539

[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]

0.83462684167407318628142973279904680

ガウス定数

G {displaystyle {G}}} {\displaystyle {G}}

1 a g m ( 1 , 2 ) = 4 2 ( 1 4 !) 2 π 3 / 2 A g m : A r i t h m e t i c - g e o m e t r i c m e a n {displaystyle {Agm:\;Arithmetic-geometric};mean}{{frac {1}{mathrm {agm} (1,{}sqrt {2}) }}={Thrac {4{Thracrt {2}},({tfrac {1}{4}}} !)^{2}}{pi ^{3/2}}}}={{frac {4}}{pi ^{3/2}}}{}} {\displaystyle {\underset {Agm:\;Arithmetic-geometric\;mean}{{\frac {1}{\mathrm {agm} (1,{\sqrt {2}})}}={\frac {4{\sqrt {2}}\,({\tfrac {1}{4}}!)^{2}}{\pi ^{3/2}}}}}}

(4 sqrt(2)(1/4!)^2)/pi^(3/2)

T

A014549

[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]

1.01734306198444913971451792979092052

ゼータ(6)

ζ ( 6 ) {displaystyle \zeta (6) }. {\displaystyle \zeta (6)}

π 6 945 = ∏ n = 1 ∞ 1 - p n - 6 p n : p r i m o = 1 1 - 2 - 6 ⋅ 1 1 - 3 - 6 ⋅ 1 1 - 5 - 6 ... .{displaystyle {frac { Θpi ^{6}}{945}}=prod _{n=1}^{infty }{underset {p_{n}:\Ȃ{1}{1-p_{n}}^{-6}}={frac {1}{1{-}2^{-6}}{cdot }{frac {1}{-}3^{-6}}{cdot }{frac {1}{1{-}5^{-6}}} ⁾⁾となる。..} {\displaystyle {\frac {\pi ^{6}}{945}}=\prod _{n=1}^{\infty }{\underset {p_{n}:\,{primo}}{\frac {1}{{1-p_{n}}^{-6}}}}={\frac {1}{1{-}2^{-6}}}{\cdot }{\frac {1}{1{-}3^{-6}}}{\cdot }{\frac {1}{1{-}5^{-6}}}...}

Prod[n=1 to ∞] {1/(1-ithprime(n)^-6)}.

T

A013664

[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]

0,60792710185402662866327677925836583

コンスタンテ・デ・ハフナー・サルナック・マカーリー

1 ζ ( 2 ) {displaystyle {frac {1}{zeta (2)}}} {\displaystyle {\frac {1}{\zeta (2)}}}

6 π 2 = ∏ 0 ∞ ( 1 - 1 p n 2 ) p n : p r i m o = ( 1 - 1 2 2 ) ( 1 - 1 3 2 ) ( 1 - 1 5 2 ) ... {displaystyle {}frac {6}{pi ^{2}}{=}prod _{n=0}^{Enfty }{ThinderSet {p_{n}:\{p_{n}: {1}{p_{n}}^{2}}}{left(1-{}{frac {1}{2^{2}}}right)}}{=}textstyle \left(1{-}{frac {1}{3^{2}}}right)\left(1{-}{prac {1}{5^{2}}right){dots } {1-{{frac {1}{2}}}} {1{p_{2}}}} {1{frac {1}{2}^{2}}{right]{1-left(1}{2}}{left){right}{2}}{2}}は{{{p}{5}{plimo}{} {plemo}}}と呼ばれる {\displaystyle {\frac {6}{\pi ^{2}}}{=}\prod _{n=0}^{\infty }{\underset {p_{n}:\,{primo}}{\left(1-{\frac {1}{{p_{n}}^{2}}}\right)}}{=}\textstyle \left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{3^{2}}}\right)\left(1{-}{\frac {1}{5^{2}}}\right)\dots }

Prod{n=1 to ∞} (1-1/ithprime(n)^2)

T

A059956

[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]

1.11072073453959156175397024751517342

正方形と外接または内接円の比率

π 2 2 { {displaystyle {}} {}frac {pi }{2{sqrt {2}}}} {}} {\displaystyle {\frac {\pi }{2{\sqrt {2}}}}}

∑ n = 1 ∞ ( - 1 ) ⌊ n - 1 2 ⌋ 2 n = 1 1 + 1 3 - 1 5 - 1 7 + 1 9 + 1 11 - ...である。{displaystyle }{sum _{n=1}^{Chinfty }{Thatfrac {(-1)^{Chinfloor {Chinfrac {n-1}{2}} }}{2n+1}}={Chinfrac {1}{3}}-{Chinfrac {1}{5}}-{Chinfrac {1}{7}}+{Chinfrac{1}{9}}+{Chinfrac{1}{11}}-dots } {dots }は、次のようになります。 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{\lfloor {\frac {n-1}{2}}\rfloor }}{2n+1}}={\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\dots }

sum[n=1 to ∞]{(-1)^(floor((n-1)/2))/(2n-1)}.

T

A093954

[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]

2.80777024202851936522150118655777293

フランセン-ロビンソン定数

F {displaystyle}}. {\displaystyle {F}}

∫ 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e - x π 2 + ln 2 x d x {displaystyle \int _{0}^{}infty }{Prac {1}{Gamma (x)}},dx.=e+int _{0}^{}infty }{Prac {e^{-x}}{pi ^{2}+LN ^{2}}x,dx}} . {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,dx.=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,dx}

N[int[0 to ∞] {1/Gamma(x)}]である。

T

A058655

[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]

1.64872127070012814684865078781416357

数の平方根 e

e {displaystyle { {sqrt {e}}} {\displaystyle {\sqrt {e}}}

∑ n = 0 ∞ 1 2 n n != ∑ n = 0 ∞ 1 ( 2 n ) !!= 1 1 + 1 2 + 1 8 + 1 48 + ⋯ {displaystyle }{sum _{n=0}^{infty }{frac {1}{2^{n}n!}}={sum _{n=0}^{infty }{frac {1}{(2n)!}}={frac {1}}+{frac {1}{2}}+{frac {1}{8}}+{frac {1}{48}}+<dots }} {ddotsは0に近い。 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{n}n!}}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}}={\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{48}}+\cdots }

sum[n=0 to ∞]{1/(2^n n!)}.

T

A019774

[1;1,1,5,1,9,1,13,1,17,1,21,1,・・・]
=[1;1,(1,1,4p+1)],p(ℕ)である。

i

イマジナリーナンバー

i {displaystyle {i}} {\displaystyle {i}}

- 1 = ln ( - 1 ) π e i π = - 1 {displaystyle {}={frac { {ln(-1)}{pi }}qquad \mathrm {e}}^{i,\pi }=-1} となります。 {\displaystyle {\sqrt {-1}}={\frac {\ln(-1)}{\pi }}\qquad \qquad \mathrm {e} ^{i\,\pi }=-1}

にじゅうさんじ

C

262537412640768743.999999999999250073

エルミート・ラマヌジャン定数

R {displaystyle{R}} {\displaystyle {R}}

e π 163 {displaystyle e^{pi {sqrt {163}}} {\displaystyle e^{\pi {\sqrt {163}}}}

e^(π sqrt(163))

T

A060295

[262537412640768743;1,1333462407511,1,8,1,1,5,...]

4.81047738096535165547303566670383313

ジョン・コンスタント

γ {displaystyle \gamma }. {\displaystyle \gamma }

i i = i - i = i 1 i = ( i i ) - 1 = e π 2 {displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{arette {1}{i}=(i^{i})^{-1}=e^{arette {pi }{2}}}} {displaystyle}={i}{i}{1}{i}}={i^{frac}}{i}}{i}}{i^{frac}{i^{pi}{i^{pi}}{i^{li {\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{-1}=e^{\frac {\pi }{2}}}

e^(π/2)

T

A042972

[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...]

4.53236014182719380962768294571666681

コンスタンテ・デ・ヴァン・デル・パウ

α {displaystyle \alpha }. {\displaystyle \alpha }

π l n ( 2 ) = ∑ n = 0 ∞ 4 ( - 1 ) n 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n + 1 n = 4 1 - 4 3 + 4 5 - 4 7 + 4 9 - ... 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ...である。displaystyle { {frac {pi }{ln(2)}}={frac {}sum _{n=0}^{infty }{frac {4(-1)^{n}}{2n+1}}}{sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n}}}={frac {{frac {4}{1}}{-}}} {frac _[-1]{{n}}}}}={frac _{frac }{n}}}} = {frac _{frac}{{n}}}} {facility {{facility}} {facility } {{facility}} {facility }{facility }}{facility }{{facifier}{frac {4}{3}}{+}{frac {4}{5}}{-}{frac {4}{7}}{+}{frac {4}{9}}-dots }{{frac {1}{1}}{-}{frac {1}{2}{+}{frac {1}{3}}{-}{frac {1}{4}}{+}{frac {1}{5}-adots }}とする。} {\displaystyle {\frac {\pi }{ln(2)}}={\frac {\sum _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}}{\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}}}={\frac {{\frac {4}{1}}{-}{\frac {4}{3}}{+}{\frac {4}{5}}{-}{\frac {4}{7}}{+}{\frac {4}{9}}-\dots }{{\frac {1}{1}}{-}{\frac {1}{2}}{+}{\frac {1}{3}}{-}{\frac {1}{4}}{+}{\frac {1}{5}}-\dots }}}

π/ln(2)

T

A163973

[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...]

0.76159415595576488811945828260479359

ハイパーボリックタンジェント (1)

t h 1 {displaystyle th,1}. {\displaystyle th\,1}

e - 1 e + 1 e = e 2 - 1 e 2 + 1 {}displaystyle { {e-{frac {1}{e}}}{e+{frac {1}{e}}}}={frac {e^{2}-1}{e^{2}+1}}}} {}. {\displaystyle {\frac {e-{\frac {1}{e}}}{e+{\frac {1}{e}}}}={\frac {e^{2}-1}{e^{2}+1}}}

(e-1/e)/(e+1/e)

T

A073744

[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;(2p+1)], p∈uℕ

0.69777465796400798200679059255175260

継続分数定数

C C F {} {displaystyle {C}_{CF}}} {\displaystyle {C}_{CF}}

J 1 ( 2 ) J 0 ( 2 ) F u n c t i o n J k ( ) B e s s e l = ∑ n = 0 ∞ n !n !n !∑ n = 0 ∞ 1 n !n != 0 1 + 1 1 + 2 4 + 3 36 + 4 576 + ... 1 1 + 1 1 + 1 4 + 1 36 + 1 576 + ...displaystyle { {underset {J_{k}(){Bessel}}{nderset {Function}{frac {J_{1}(2)}{J_{0}(2)}}}={frac {sum \limits _{n=0}^{infty }{frac {n}{n!n!}}{sum \limits _{n=0}^{infty }{frac {1}{n!n!}}}={frac {0}{1}}+{frac {1}{1}}+{frac {2}{4}}+{frac {3}{36}}+{frac {4}{576}}+dots }}{frac {1}{1}}+{frac {1}{4}+{frac {1}{36}}+{frac {1}{576}}+dots }} {{frac {1} {1} {1}{1}}} + {{frac {1}}{1}}+ {frac {1}{1}}}+ {frac{1}}{2}{3}}}+ {frac [1}{1}}+ {1}}+dots }}}とする。 {\displaystyle {\underset {J_{k}(){Bessel}}{\underset {Function}{\frac {J_{1}(2)}{J_{0}(2)}}}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {n}{n!n!}}}{\sum \limits _{n=0}^{\infty }{\frac {1}{n!n!}}}}={\frac {{\frac {0}{1}}+{\frac {1}{1}}+{\frac {2}{4}}+{\frac {3}{36}}+{\frac {4}{576}}+\dots }{{\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{36}}+{\frac {1}{576}}+\dots }}}

(sum {n=0 to inf} n/(n!n!))/(sum {n=0 to inf} 1/(n!n!))

A052119

[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;(p+1)], p∈u_2115

0.36787944117144232159552377016146086

逆ネイピア定数

1 e {displaystyle { {frac {1}{e}}}. {\displaystyle {\frac {1}{e}}}

∑ n = 0 ∞ ( - 1 ) n n != 1 0 !- 1 1 !+ 1 2 !- 1 3 !+ 1 4 !- 1 5 !+ ... {\displaystyle \sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{0!}}-{frac {1}{1!}}+{frac {1}{2!}}-{frac {1}{3!}}+{frac {1}{4!}}-{frac {1}{5!}}+dots }} { {frac{1}{0!} }] {frac {1}{3!}] + {frac{2!} }}+{frac{3!} }} + {frac{3!}} {n!}} {frac{2{2!} } }} +dots {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}={\frac {1}{0!}}-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+{\frac {1}{4!}}-{\frac {1}{5!}}+\dots }

sum[n=2 to ∞]{(-1)^n/n!}.

T

A068985

[0;2,1,2,1,4,1,6,1,8,1,10,1,12,・・・]
=[0;2,1,(1,2p,1)]、p(ℕ)。

2.71828182845904523536028747135266250

ネピア定数

e {displaystyle e} {\displaystyle e}

∑ n = 0 ∞ 1 n != 1 0 !+ 1 1 + 1 2 !+ 1 3 !+ 1 4 !+ 1 5 !+⋯ {} </p> <p>Sum _{n=0}^{infty }{Prac {1}{n!}}={frac {1}{0!}}+{frac {1}{1}}+{frac {1}{2!}}+{frac {1}{3!}}+{frac {1}{4!}}+{frac {1}{5!}}+<cdots }} {p} {1}{1}{0!}}{2}} {{1} {2}}}+{frac{1}{3!} }}+<cdots {1}{1}{1}{2}}{0}}{0}}と同じ。 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+{\frac {1}{5!}}+\cdots }

Sum[n=0 to ∞]{1/n!}

T

A001113

[2;1,2,1,4,1,6,1,8,1,10,1,12,1,・・・]
=[2;(1,2p,1)]、p(ℕ)。

0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i

iの階乗

i !!} {\displaystyle i\,!}

Γ ( 1 + i ) = i Γ ( i ) {displaystyle \Gamma (1+i)=i,\Gamma (i)} }. {\displaystyle \Gamma (1+i)=i\,\Gamma (i)}

ガンマ(1+i)

C

A212877
A212878

[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i

0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i

インフィニット
iの
テトレーション

∞ i { {}^{infty }i} {}displaystyle {}^{infty }} {\displaystyle {}^{\infty }i}

lim n → ∞ n i = lim n → ∞ i ⋅ i ⎹ n { {displaystyle \lim _{nămeto \infty }{}^{n}i=lim _{nămeto \infty }}underbrace {i^{i^{cdot ^{cdot ^{i}}}}}_{n}} {\displaystyle \lim _{n\to \infty }{}^{n}i=\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}}

i^i^i^...

C

A077589
A077590

[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i

0.56755516330695782538461314419245334


無限のモジュール
iの
テトレーション

| ∞ i | { {displaystyle |{}^{ {}infty }i}}. {\displaystyle |{}^{\infty }i|}

lim n → ∞ | n i | = | lim n → ∞ i ⋅ i ⏟ n | {displaystyle \lim _{năto \infty }left|{}^{n}i ◇right|=left|lim _{năto \infty }}underbrace {i^{i^{Cdot ^{Cdot ^{i}}}} ◇Lim n → ∞ | n i | = | lim n → ∞ i ||||| | | | | | | | | | | | | } | | | {displaystyle | | | | | | | | | | | | | | | | } } | {displaystyle}は、[ ]を意味する。_{n} {{n} {{n}}right}} {\displaystyle \lim _{n\to \infty }\left|{}^{n}i\right|=\left|\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}\right|}

モッド(i^i^i^...)

A212479

[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]

0.26149721284764278375542683860869585

マイセルメルテンス定数

M {displaystyle M} {\displaystyle M}

lim n → ∞ ( ∑ p ≦ n 1 p - ln ( ln ( n ) ) )){displaystyle \lim _{nŏrightarrow }left(\sum _{pŏleq n}{frac {1}{p}}-{ln(\ln(n)))\right)}{\displaystyle \lim _{n\rightarrow \infty }\left(\sum _{p\leq n}{\frac {1}{p}}-\ln(\ln(n))\right)} ...p: primes

A077761

[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...]

1.9287800...

ライト定数

ω・)ノ゙ {\displaystyle \omega }

⌊2 2 ω ⌋ {displaystyle \leftloor 2^{2^{2^{Cdot ^{2^{Cdot }}}}rightrfloor }{\displaystyle \left\lfloor 2^{2^{2^{\cdot ^{\cdot ^{2^{\omega }}}}}}\right\rfloor } = プリモスのことです。{displaystyle \quad }.{\displaystyle \quad }⌊ 2 ω ⌋ {displaystyle ⌋Floor 2^{omega }} {rightrfloor }{\displaystyle \left\lfloor 2^{\omega }\right\rfloor } =3, ⌊ 2 ω ⌋ {displaystyle ⌋Floor 2^{2^{omega }} {lightrfloor}{\displaystyle \left\lfloor 2^{2^{\omega }}\right\rfloor } =13,⌊2 2 ω {Displaystyle ⌋Floor 2^{2^{2^{omega }}} ◇rightrfloor }{\displaystyle \left\lfloor 2^{2^{2^{\omega }}}\right\rfloor } =16381, ...{displaystyle \dots }. {\displaystyle \dots }

A086238

[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]

0.37395581361920228805472805434641641

アルチン定数

C A r t i n {displaystyle C_{Artin}} {\displaystyle C_{Artin}}

∏ n = 1 ∞ ( 1 - 1 p n ( p n - 1 ) ){displaystyle \ _{n=1}^{Pinfty }left(1-{Thrac {1}{p_{n}(p_{n}-1)}} ◇right)}{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}(p_{n}-1)}}\right)} ......pn : primo

T

A005596

[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]

4.66920160910299067185320382046620161

ファイゲンバウム定数 δ

δ {\displaystyle {\delta }}

lim n → ∞ x n + 1 - x n x n + 2 - x n + 1 x∈ ( 3 , 8284 ; 3 , 8495 ) {displaystyle \lim _{nto \infty }{frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}quad \scriptstyle xin (3,8284;3,8495) } } } {frac _{nto x_{n}}}{x_{n+3}x{n+3}} {frac _{n+4}x{n+5}x {frac _{x+5] } {frac _{n+5]-x {n+5]-x {frac _[ xn+3 {\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}\qquad \scriptstyle x\in (3,8284;\,3,8495)}

x n + 1 = a x n ( 1 - x n ) o x n + 1 = a sin ( x n ) {displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}quad x_{n+1}=\,asin(x_{n})} } ←クリックすると拡大表示されます。 {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}\quad x_{n+1}=\,a\sin(x_{n})}

T

A006890

[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]

2.50290787509589282228390287321821578

ファイゲンバウム定数 α

α {displaystyle \alpha }. {\displaystyle \alpha }

lim n → ∞ d n d n + 1 {displaystyle \lim _{n}to \infty }{frac {d_{n}}{d_{n+1}}}}}. {\displaystyle \lim _{n\to \infty }{\frac {d_{n}}{d_{n+1}}}}

T

A006891

[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]

5.97798681217834912266905331933922774

Hexagonal Madelung Constant 2

H 2 ( 2 ) {displaystyle H_{2}(2) }. {\displaystyle H_{2}(2)}

π ln ( 3 ) 3 {displaystyle \ln(3){sqrt {3}}} {displaystyle \ln(3){sqrt {3}}}と表示されます。 {\displaystyle \pi \ln(3){\sqrt {3}}}

円周率Log[3]Sqrt[3]です。

T

A086055

[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...]

0.96894614625936938048363484584691860

ベータ(3)

β ( 3 ) {displaystyle \beta (3) }. {\displaystyle \beta (3)}

π 3 32 = ∑ n = 1 ∞ - 1 n + 1 ( - 1 + 2 n ) 3 = 1 1 3 - 1 3 + 1 5 3 - 1 7 3 + ...である。displaystyle {}=Cum _{n=1}^{infty }{frac {-1^{n+1}}{(-1+2n)^{3}}={frac {1}{1^{3}}}{-}{frac {1}{3^{3}}{+}{frac {1}{5^{3}}}{-}{frac {1}{7^{3}}{+}dots} {frac{3}{3}}} {frac{1}{3}{3}{32}}{pip {{3}{32}}={{sum_{n}}}とする}} {frac{3}{{1^{1}{3}} {{3}}とする}} {frac{{1^{3}{3}{1^{3}{1^}} {-} {{3}} {{3}}とする {\displaystyle {\frac {\pi ^{3}}{32}}=\sum _{n=1}^{\infty }{\frac {-1^{n+1}}{(-1+2n)^{3}}}={\frac {1}{1^{3}}}{-}{\frac {1}{3^{3}}}{+}{\frac {1}{5^{3}}}{-}{\frac {1}{7^{3}}}{+}\dots }

Sum[n=1 to ∞]{(-1)^(n+1)/(-1+2n)^3}.

T

A153071

[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]

1.902160583104

ブルン定数2 = Σ逆双素数

B 2 {displaystyle B_{{2}}} {\displaystyle B_{\,2}}

∑ ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + ... {displaystyle \textstyle \sum {underset {p,\,p+2:\,{primos}}{({}frac {1}{p}+{{frac {1}{p+2}})}}=({}frac {1}{3}{+}{frac {1}{5}})+({}tfrac {1}{5}{+}{tfrac {1}{7}})+({}tfrac {1}{11}{+}{tfrac {1}{13}})+୧dots }. {\displaystyle \textstyle \sum {\underset {p,\,p+2:\,{primos}}{({\frac {1}{p}}+{\frac {1}{p+2}})}}=({\frac {1}{3}}{+}{\frac {1}{5}})+({\tfrac {1}{5}}{+}{\tfrac {1}{7}})+({\tfrac {1}{11}}{+}{\tfrac {1}{13}})+\dots }

A065421

[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]

0.870588379975

ブルン定数4 = 双子素数のΣ逆数

B 4 {displaystyle B_{displaystyle B_{4}}} {\displaystyle B_{\,4}}

( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 4 , p + 6 : p r i m e s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + ... {displaystyle {underset {p,\,p+2,\,p+4,¥p,¥p+6:\,{primes}}{left({{tfrac {1}{5}}+{tfrac {1}{7}}+{tfrac {1}{11}}+{tfrac {1}{13}}) }}+left({tfrac {1}{11}}+{tfrac {1}{13}}+{tfrac {1}{17}}+{tfrac {1}{19}}) + }} {dots {dots {dots {dots {dots {dots {d} {d} {d} {d} {d} }}}}}}}} {\displaystyle {\underset {p,\,p+2,\,p+4,\,p+6:\,{primes}}{\left({\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+{\tfrac {1}{13}}\right)}}+\left({\tfrac {1}{11}}+{\tfrac {1}{13}}+{\tfrac {1}{17}}+{\tfrac {1}{19}}\right)+\dots }

A213007

[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]

22.4591577183610454734271522045437350

π

π e { {displaystyle \pi ^{e}}}. {\displaystyle \pi ^{e}}

π e { {displaystyle \pi ^{e}}}. {\displaystyle \pi ^{e}}

π

A059850

[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...]

3.14159265358979323846264338327950288

円周率アルキメデス定数

π {displaystyle \pi }. {\displaystyle \pi }

lim n → ∞ 2 n 2 - 2 + 2 + ⋯ + 2 ⏟ n {displaystyle \lim _{nto \infty },2^{n} }underbrace {}sqrt {2-{sqrt {2+{theaterdots +{sqrt {2}}}}}}}}} {}sqrt {2+{theaterdots +{theaterdots}}} {2+{sqrrt {2}}}} {2}sqrt {2}} {2}sqrrt {2} {2_{n}} {\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}}

Sum[n=0 to ∞]{(-1)^n 4/(2n+1)}.

T

A000796

[3;7,15,1,292,1,1,1,2,1,3,1,14,...]

0.06598803584531253707679018759684642

e - e {} {displaystyle e^{-e}} {\displaystyle e^{-e}}

e - e {} {displaystyle e^{-e}}{\displaystyle e^{-e}}...テトレーションの下限

T

A073230

[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]

0.20787957635076190854695561983497877

アイ

i i {displaystyle i^{i}}. {\displaystyle i^{i}}

e - π 2 {displaystyle e^{frac {-pi }{2}}}. {\displaystyle e^{\frac {-\pi }{2}}}

e^(-π/2)

T

A049006

[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...]

0.28016949902386913303643649123067200

バーンスタイン定数

β {displaystyle \beta }. {\displaystyle \beta }

1 2 π { {displaystyle { {Cfrac {1}{2{sqrt {pi }}}} }} {\displaystyle {\frac {1}{2{\sqrt {\pi }}}}}

T

A073001

[0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…]

0.28878809508660242127889972192923078

フラジョレとリッチモンド

Q {displaystyle Q} Q

∏ n = 1 ∞ ( 1 - 1 2 n ) ( 1 - 1 2 2 ) ( 1 - 1 2 3 ) ...である。{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{2^{n}}}\right)=\left(1{-}{\frac {1}{2^{1}}}\right)\left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{2^{3}}}\right)\dots }

prod[n=1 to ∞]{1-1/2^n} となります。

A048651

0.31830988618379067153776752674502872

円周率の逆数、ラマヌジャン

1 π { {displaystyle {}} { {frac {1}{pi }} {}} {\displaystyle {\frac {1}{\pi }}}

2 2 9801 ∑ n = 0 ∞ ( 4 n ) !( 1103 + 26390 n ) ( n ! ) 4 396 4 n {displaystyle { {frac {2{sqrt {2}}}{9801}}sum _{n=0}^{infty }{frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}}} { {frac }} {(4n)! {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}}

T

A049541

[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...]

0.47494937998792065033250463632798297

ヴァイエルストラス定数

W W E {displaystyle W_{_{WE}}} {\displaystyle W_{_{WE}}}

e π 8 π 4 ∗ 2 3 / 4 ( 1 4 ! ) 2 {displaystyle { {e^{Cachefrac {Cachepi }{8}}{Cachesqrt {Cachepi }}}{4*2^{3/4}{({Cachefrac {1}{4}!)^{2}}}}} { {e^{Cachefrac}{1}{2}}}} {e}{{Cachefrac}{2}}を含む。 {\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4*2^{3/4}{({\frac {1}{4}}!)^{2}}}}}

(E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2)

T

A094692

[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...]

0.56714329040978387299996866221035555

オメガ定数

Ω {displaystyle} {Omega }. {\displaystyle \Omega }

W ( 1 ) = ∑ n = 1 ∞ ( - n ) n - 1 n != 1 - 1 + 3 2 - 8 3 + 125 24 - ... {Thinkdisplaystyle W(1)=THUM _{n=1}^{INFTY }{frac {(-n)^{n-1}}{n!}}=1{-}1{+}{Frac {3}{2}}{-}{Frac {8}{3}}{+}{Frac {125}{24}} -dots } {TTY {{1}{2}{3}{3}}}+{Frac{3}{3}{3}{3}}{{2}{2}{2}{3] } {{frac{2}{2} {{3] {\displaystyle W(1)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}=1{-}1{+}{\frac {3}{2}}{-}{\frac {8}{3}}{+}{\frac {125}{24}}-\dots }

sum[n=1 to ∞]{(-n)^(n-1)/n!}.

T

A030178

[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...]

0.57721566490153286060651209008240243

オイラー

γ {displaystyle \gamma }. {\displaystyle \gamma }

- ψ ( 1 ) = ∑ n = 1 ∞ ∑ k = 0 ∞ ( - 1 ) k 2 n + k { }displaystyle -psi (1)=SUM _{N=1}^{INFTY }SUM _{k=0}^{INFTY }{FRAC {(-1)^{k}}{2^{n}+k}}}} } } } {Displaystyle -psi (1)=SUM _{N=1}^{INFTY }} {Displaystyle -sum_{k=0}^{CK}}} } } }(1 {\displaystyle -\psi (1)=\sum _{n=1}^{\infty }\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{n}+k}}}

sum[n=1 to ∞]|sum[k=0 to ∞]{((-1)^k)/(2^n+k)}.

?

A001620

[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...]

0.60459978807807261686469275254738524

ディリクレ・セリー

π 3 3}} { {displaystyle} { ¦Pi }{3{sqrt {3}}}} { π 3 3 {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}}

∑ n = 1 ∞ 1 n ( 2 n n ) = 1 - 1 2 + 1 4 - 1 5 + 1 7 - 1 8 + ⋯ {displaystyle \sum _{n=1}^{infty }{frac {1}{n{2n \choose n}}}=1-.{frac {1}{2}}+{{cfrac {1}{4}}-{cfrac {1}{5}}+{cfrac {1}{7}}-{cfrac {1}{8}}+{cdots} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n{2n \choose n}}}=1-{\frac {1}{2}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{8}}+\cdots }

Sum[1/(n 二項式[2 n, n]), {n, 1, ∞}].

T

A073010

[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...]

0.63661977236758134307553505349005745

2/Pi、フランソワ・ヴィエート

2 π { {displaystyle {} { {frac {2}{pi}}}} {\displaystyle {\frac {2}{\pi }}}

2 2 ⋅ 2 + 2 2 ⋅ 2 + 2 2 ⋯ {displaystyle { {frac {}sqrt {2}{2}} {cdot {frac {}sqrt {2+{}sqrt {2}}}{2}} {cdot } {frac {}sqrt {2+{}sqrt {2}{}}}} {2+{}sqrt }}{2}}} {cdots}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{{2] {2] {2] {2] {2] {2] {2] {2}{2 {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots }

T

A060294

[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]

0.66016181584686957392781211001455577

双原定数

C 2 {displaystyle C_{2}} {\displaystyle C_{2}}

∏ p = 3 ∞ p ( p - 2 ) ( p - 1 ) 2 {displaystyle \prod _{p=3}^{pinfty }{frac {p(p-2)}{(p-1)^{2}}}}} ←クリック {\displaystyle \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}}

prod[p=3~∞]{p(p-2)/(p-1)^2

A005597

[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]

0.66274341934918158097474209710925290

ラプラス極限定数

λ {displaystyle \lambda }. {\displaystyle \lambda }

A033259

[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...]

0.69314718055994530941723212145817657

対数 de 2

L n ( 2 ) {displaystyle Ln(2) }. {\displaystyle Ln(2)}

∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ⋯ {displaystyle \sum _{n=1}^{infty }{hatfrac {(-1)1)^{n+1}}{n}}={Cfrac {1}{1}}-{Cfrac {1}{2}}+{Cfrac {1}{3}}-{Cfrac {1}{4}}+{Cfrac {1}{5}}-cdots} {cdots}={Cfrac {1}{2}}+{Cfrac {1}{2}{3}{4}}+{Cfrac{1}{3}{4}{5}}とする{/}。 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-\cdots }

Sum[n=1 to ∞]{(-1)^(n+1)/n}.

T

A002162

[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...]

0.78343051071213440705926438652697546

ソフマップの夢1 J.Bernoulli

I 1 {displaystyle I_{1}} {\displaystyle I_{1}}

∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 - 1 2 2 + 1 3 3 - 1 4 4 + 1 5 5 + ...{displaystyle \sum _{n=1}^{infty }{Thankfrac {(-1)^{n+1}}{n^{n}}}=1-{Cfrac {1}{2^{2}}+{Cfrac {1}{3^{3}}-{Cfrac {1}{4^{4}}+{Cfrac {1}{5^{5}}+Dots}}となり、このとき計算された値は次のようになります。} {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{n}}}=1-{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}-{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+\dots }

Sum[ -(-1)^n /n^n].

T

A083648

[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...]

0.78539816339744830961566084581987572

ディリクレベータ(1)

β ( 1 ) {displaystyle \beta (1) }. {\displaystyle \beta (1)}

π 4 = ∑ n = 0 ∞ ( - 1 ) n 2 n + 1 = 1 1 - 1 3 + 1 5 - 1 7 + 1 9 - ⋯ {displaystyle { {pi }{4}}=SUM _{N=0}^{INFTY }{FRAC {(-1)1)^{n}}{2n+1}}={Cfrac {1}{1}}-{Cfrac {1}{3}}+{Cfrac {1}{5}}-{Cfrac {1}{7}}+{Cfrac {1}{9}}-{Cdots }}={Cfrac {1}{3}{1}{1}{3}{1}{1}{2}}={Cfrac {1}}{2}}とする. {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots }

Sum[n=0 to ∞]{(-1)^n/(2n+1)}.

T

A003881

[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]

0.82246703342411321823620758332301259

旅するセールスマン ニールセン-ラマヌジャン

ζ ( 2 ) 2 {displaystyle {disfrac {zeta (2)}{2}}}. {\displaystyle {\frac {\zeta (2)}{2}}}

π 2 12 = ∑ n = 1 ∞ ( - 1 ) n + 1 n 2 = 1 1 2 - 1 2 2 + 1 3 2 - 1 4 2 + 1 5 2 - ...である。displaystyle {}=Cum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{2}}={frac {1}{1^{2}}{-}{frac {1}{3^{2}}{-}{frac {1}{4^{2}}{+}{frac {1}{5^{2}}-}dots} {1}{2} {1} {2}{2}}}+}{frac {1}{2^}}{+}{n}{2}}{2}{2} {2}{2}}{2}}{2}}とする[ 1} {2} {2] - {2] {2] {2] {1] {1] {1] {2}{2}}+ {2] {2] }とする{{2 {\displaystyle {\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}-\dots }

Sum[n=1 to ∞]{((-1)^(k+1))/n^2}.

T

A072691

[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...]

0.91596559417721901505460351493238411

カタロニア語定数

C {\displaystyle C}

∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) 2 = 1 1 2 - 1 3 2 + 1 5 2 - 1 7 2 + ⋯ {displaystyle \sum _{n=0}^{infty }{frac {(-)1)^{n}}{(2n+1)^{2}}={frac {1}{1^{2}}-{frac {1}{3^{2}}}+{frac {1}{5^{2}}-{frac {1}{7^{2}}}+{cdots }} {{frac {1}/{1^{2}}+{2}}={frac{1}/{1^{3}{2}}}{frac}}{1}/{2}}{1^{2}}{1}}とすることができます。 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\cdots }

Sum[n=0 to ∞]{(-1)^n/(2n+1)^2}.

I

A006752

[0;1,10,1,8,1,88,4,1,1,7,22,1,2,...]

1.05946309435929526456182529494634170

半音間距離の比率

2 12 {displaystyle { {sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2 12 {displaystyle { {sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2^(1/12)

I

A010774

[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]

1,.08232323371113819151600369654116790

ゼータ(04)

ζ 4 {displaystyle \zeta {4}}. {\displaystyle \zeta {4}}

π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + ...である。{displaystyle {}=Cum _{n=1}^{infty }{frac {1}{n^{4}}}={frac {1}{1^{4}}+{frac {1}{2^{4}}}+{frac {1}{3^{4}}+{frac {1}{4^{4}}}+{frac {1}{5^{4}}+dots}}とする。 {\displaystyle {\frac {\pi ^{4}}{90}}=\sum _{n=1}^{\infty }{\frac {1}{n^{4}}}={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{4}}}+\dots }

Sum[n=1〜∞]{1/n^4}となります。

T

A013662

[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]

1.1319882487943 ...

ヴィスワナス定数

C V i {displaystyle C_{Vi}}} {\displaystyle C_{Vi}}

lim n → ∞ | a n | 1 n {displaystyle \lim _{n}to \infty }|a_{n}|^{hrac {1}{n}}}} 。 {\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}}

A078416

[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]

1.20205690315959428539973816151144999

アペリ定数

ζ ( 3 ) {displaystyle \zeta (3)} ζ ( 3 ) {displaystyle ζ (3) }. {\displaystyle \zeta (3)}

∑ n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 + 1 4 3 + 1 5 3 + ⋯ {displaystyle \sum _{n=1}^{infty }{hatfrac1}{n^{3}}={Cfrac {1}{1^{3}}+{Cfrac {1}{2^{3}}}+{Cfrac {1}{3^{3}}}+{Cfrac {1}{4^{3}}+{Cfrac {1}{5^{3}}]+Chedots{{cf}}である。\!} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{3}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots \,\!}

Sum[n=1〜∞]{1/n^3}とする。

I

A010774

[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...]

1.22541670246517764512909830336289053

ガンマ(3/4)

Γ ( 3 4 ) {displaystyle \Gamma ({tfrac {3}{4}})} }. {\displaystyle \Gamma ({\tfrac {3}{4}})}

( - 1 + 3 4 ) !( - 1 + 3 4 ) !{displaystyle \left(-1+{frac {3}{4}}right)!} {\displaystyle \left(-1+{\frac {3}{4}}\right)!}

(-1+3/4)!

T

A068465

[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...]

1.23370055013616982735431137498451889

ファバード定数

3 4 ζ ( 2 ) {displaystyle {tfrac {3}{4}} zeta (2)} } }. {\displaystyle {\tfrac {3}{4}}\zeta (2)}

π 2 8 = ∑ n = 0 ∞ 1 ( 2 n - 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ...{displaystyle {}=Cum _{n=0}^{infty }{frac {1}{(2n-1)^{2}}={frac {1}{1^{2}}+{frac {1}{3^{2}}}+{frac {1}{5^{2}}+{frac {1}{7^{2}}+dots}}となる。 {\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\dots }

sum[n=1 to ∞]{1/((2n-1)^2)}.

T

A111003

[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]

1.25992104989487316476721060727822835

2の立方根、コンスタントデリアン

2 3 {displaystyle { {sqrt[{3}]{2}}}. {\displaystyle {\sqrt[{3}]{2}}}

2 3 {displaystyle { {sqrt[{3}]{2}}}. {\displaystyle {\sqrt[{3}]{2}}}

2^(1/3)

I

A002580

[1;3,1,5,1,1,4,1,1,8,1,14,1,10,...]

1.29128599706266354040728259059560054

ソフマップの夢2 J.Bernoulli

I 2 {displaystyle I_{2}} のようになります。 {\displaystyle I_{2}}

∑ n = 1 ∞ 1 n = 1 + 1 2 2 + 1 3 3 + 1 4 4 + 1 5 5 + 1 6 6 + ...{displaystyle }{sum _{n=1}^{Enterprise}}=1+{{frac {1}{2^{2}}+{frac {1}{3^{3}}+{frac {1}{4^{4}}+{frac {1}{5^{5}}+{frac {1}{6^{6}}+桁数 }} {dots}を追加することで、さらに多くのデータを得ることができます。 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{n}}}=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}}+\dots }

Sum[1/(n^n]), {n, 1, ∞}].

A073009

[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...]

1.32471795724474602596090885447809734

プラスチック番号

ρ {displaystyle \rho }. {\displaystyle \rho }

1 + 1 + 1 + ⋯ 3 3 3 {displaystyle { {sqrt[{3}]{1+{sqrt[{3}]{1+{sqrt[{3}]{1+{cdots}}}}}}}} { {\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}}

I

A060006

[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...]

1.41421356237309504880168872420969808

2の平方根、ピタゴラス定数

2 {displaystyle { {sqrt {2}}}. {\displaystyle {\sqrt {2}}}

∏ n = 1 ∞ 1 + ( - 1 ) n + 1 2 n - 1 = ( 1 + 1 1 ) ( 1 - 1 3 ) ( 1 + 1 5 ) .....................(以下略)。. .{displaystyle \prod _{n=1}^{Thinfty }1+{Thinfrac {(-1)^{n+1}}{2n-1}}=୧left(1{+}{Thinfrac {1}{1}}right)୧left(1{-}{Thinfrac {1}{3}}right)୧left(1{+}{Thinfrac {1}{5}}right) ....} {\displaystyle \prod _{n=1}^{\infty }1+{\frac {(-1)^{n+1}}{2n-1}}=\left(1{+}{\frac {1}{1}}\right)\left(1{-}{\frac {1}{3}}\right)\left(1{+}{\frac {1}{5}}\right)...}

prod[n=1 to ∞]{1+(-1)^(n+1)/(2n-1)} のようになります。

I

A002193

[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;(2),...]

1.44466786100976613365833910859643022

シュタイナー数

e 1 e { {displaystyle e^{hrac {1}{e}}}}. {\displaystyle e^{\frac {1}{e}}}

e 1 / e {} {displaystyle e^{1/e}}.{\displaystyle e^{1/e}}...テトレーションの上限

A073229

[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]

1.53960071783900203869106341467188655

リーブズスクエアアイス定数

W 2 D {displaystyle W_{2D}}} {\displaystyle W_{2D}}

lim n → ∞ ( f ( n ) ) n - 2 = ( 4 3 ) 3 2 {displaystyle \lim _{nto \infty }(f(n))^{n^{-2}}=left({}frac {4}{3}}right)^{}frac {3}{2}}} {displaystyle}{n}{n}{3}{3}{4}{4}{3}{4}{4}{3}{4}{4}{4}}を含む {\displaystyle \lim _{n\to \infty }(f(n))^{n^{-2}}=\left({\frac {4}{3}}\right)^{\frac {3}{2}}}

(4/3)^(3/2)

I

A118273

[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...]

1.57079632679489661923132169163975144

ウォリス製品

π / 2 {displaystyle \pi /2}. {\displaystyle \pi /2}

∏ n = 1 ∞ ( 4 n 2 4 n 2 - 1 ) = 2 1・2 3・4 3・4 5・6 5・6 7・8 7・8 9 ⋯ {displaystyle \prod _{n=1}^{infty } ◇left({}frac {4n^{2}}{4n^{2}- {}frac _{1}- {}frac _{2}}} ◇lft ({}frac _{2}}{4n^{2}}) {}n -1} {}n -2 -2 -2 = 0.51}}right)={frac {2}{1}} {frac {2}{3}} {frac {4}{3}} {frac {4}{5}} {frac {6}{5}} } {frac {6}{7}} {frac {8}{7}} {frac {8}{9}} {frac {9} {2}}} {frac{2}{3} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} } {frac {6}{5} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} } } }のような関数が発生し {\displaystyle \prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots }

T

A019669

[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...]

1.60669515241529176378330152319092458

Erdős-Borwein定数

E B {displaystyle E_{B}}} {\displaystyle E_{\,B}}

∑ n = 1 ∞ 1 2 n - 1 = 1 1 + 1 3 + 1 7 + 1 15 + ⋯ {displaystyle \sum _{n=1}^{infty }{frac {1}{2^{n}-1}}={frac {1}{1}}+{frac {1}{3}}+{frac {1}{7}}+{frac {1}{15}}+cdots{sec}・{cdots}{sec}!} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{7}}+{\frac {1}{15}}+\cdots \,\!}

sum[n=1〜∞]{1/(2^n-1)}とする。

I

A065442

[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...]

1.61803398874989484820458633436563812

ファイ、黄金

φ {displaystyle} {varphi }. {\displaystyle \varphi }

1 + 5 2 = 1 + 1 + 1 + ⋯ {displaystyle { {frac {1+{ θsqrt {5}}}{2}}={θsqrt {1+{ θsqrt {1+{ θsqrt {1+{ θskdots }}}}}}}}}}} {displaystyle {frac {1+{ θskrt {1+{ θskrt {1+√{槽}}}}}}}}}}}}}}}}}}}}}} {\displaystyle {\frac {1+{\sqrt {5}}}{2}}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\cdots }}}}}}}}}

(1+5^(1/2))/2

I

A001622

[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;(1),...]

1.64493406684822643647241516664602519

ゼータ(2)

ζ ( 2 ) {displaystyle \zeta (2)} ζ ( 2 ) {displaystyle \zeta (2) }. {\displaystyle \zeta (\,2)}

π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ {displaystyle {frac {pi ^{2}}{6}}=⊖︎sum_{n=1}^{infty }{frac {1}{n^{2}}}={frac {1}{1^{2}}+{frac {1}{2^{2}}}+{frac {1}{3^{2}}+{frac {1}{4^{2}}+桁数 }} {{cdots {1}{3}{2}{2}}= {frac {1}{2}{2}}+{4}{2}}+桁数 {}}} {frac{2} {1}{1}{2}}{2}}= {frac {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots }

Sum[n=1〜∞]{1/n^2}とする。

T

A013661

[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]

1.66168794963359412129581892274995074

ソモスの二次回帰定数

σ {displaystyle \sigma }. {\displaystyle \sigma }

1 2 3 ⋯ = 1 1 / 2 ; 2 1 / 4 ; 3 1 / 8 ⋯ {displaystyle { } }}=1^{1/2};2^{1/4};3^{1/8} } } {\displaystyle {\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}\cdots }

T

A065481

[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]

1.73205080756887729352744634150587237

セオドロス定数

3 {displaystyle { {sqrt {3}}}. {\displaystyle {\sqrt {3}}}

3 {displaystyle { {sqrt {3}}}. {\displaystyle {\sqrt {3}}}

3^(1/2)

I

A002194

[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;(1,2),...]

1.75793275661800453270881963821813852

カスナー数

R {displaystyle R} R {\displaystyle R}

1 + 2 + 3 + 4 + ⋯ {displaystyle { {1+{sqrt {2+{sqrt {3+{sqrt {4+{cdots }}}}}}}} { {displaystyle {{sqrt {3+{sqrt {4+{cdots }}}}}}}} {\displaystyle {\sqrt {1+{\sqrt {2+{\sqrt {3+{\sqrt {4+\cdots }}}}}}}}}

A072449

[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]

1.77245385090551602729816748334114518

カールソン・レビン定数

Γ ( 1 2 ) {displaystyle \Gamma ({tfrac {1}{2}})} }. {\displaystyle \Gamma ({\tfrac {1}{2}})}

π = ( - 1 2 ) !!{displaystyle { syncrt {pi }}=Centaleft(-{Thrac {1}{2}}right)!} {\displaystyle {\sqrt {\pi }}=\left(-{\frac {1}{2}}\right)!}

へいほう

T

A002161

[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]

2.29558714939263807403429804918949038

ユニバーサルパラボリック定数

P 2 {displaystyle P_{displaystyle P_{2}}} {\displaystyle P_{\,2}}

ln ( 1 + 2 ) + 2 { {displaystyle \ln(1+{CASQRT {2}})+{CASQRT {2}}}}}. {\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}}}

ln(1+sqrt 2)+sqrt 2

T

A103710

[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...]

2.30277563773199464655961063373524797

ブロンズ番号

σ R r { {displaystyle \sigma _{,Rr}}} σ {\displaystyle \sigma _{\,Rr}}

3 + 13 2 = 1 + 3 + 3 + 3 + ⋯ {displaystyle { {frac {3+{CASQRT {13}}}{2}}=1+{CASQRT {3+{CASQRT {3+{CASQRT }}}}}}}}}} {frac {3+{CASQRT} {3+{CASQRT {3+{CASQRT {3+¥casicdots}}}}}}}}} {\displaystyle {\frac {3+{\sqrt {13}}}{2}}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+\cdots }}}}}}}}}

(3+sqrt 13)/2

I

A098316

[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;(3),...]

2.37313822083125090564344595189447424

レビー定数 2

2 ln γ {displaystyle 2,\ln γ } }. {\displaystyle 2\,\ln \,\gamma }

π 2 6 ln ( 2 ) {displaystyle {} { {pi ^{2}}{6ln(2)}}} {\displaystyle {\frac {\pi ^{2}}{6\ln(2)}}}

円周率^(2)/(6*ln(2))

T

A174606

[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]

2.50662827463100050241576528481104525

2πの平方根

2 π { {displaystyle { {sqrt {2pi }}} π {\displaystyle {\sqrt {2\pi }}}

2π = lim n → ∞ n ! e n n n {displaystyle { }=lim _{nto \infty }{frac {n!\;e^{n}}{n^{n}{the}}}}} {displaystyle { }=lim _{nto|the}|the}|the}|n{n}|the}}}}} {displaystyle { {} {} {} n n {}} {} {} {} n {}}}} {n {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!\;e^{n}}{n^{n}{\sqrt {n}}}}}

二乗

T

A019727

[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...]

2.66514414269022518865029724987313985

ゲルフォンド・シュナイダー定数

G G S { {displaystyle G_{_{,GS}}} {\displaystyle G_{_{\,GS}}}

2 2 {displaystyle 2^{ θsqrt {2}}}. {\displaystyle 2^{\sqrt {2}}}

2^sqrt{2}

T

A007507

[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...]

2.68545200106530644530971483548179569

キンチン定数

K 0 {displaystyle K_{0}}} {\displaystyle K_{\,0}}

∏ n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln n / ln 2 {displaystyle \prod _{n=1}^{infty }left[{1+{1 \over n(n+2)}}right]^{ln n/}} ∎ ﹑﹑﹑﹑﹑﹑∎훀൬ɷ {\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\ln n/\ln 2}}

prod[n=1 to ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2)))} となる。

?

A002210

[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]

3.27582291872181115978768188245384386

キンチンレヴィー定数

γ {displaystyle \gamma }. {\displaystyle \gamma }

e π 2 / ( 12 ln 2 ) {displaystyle e^{pi ^{2}/(12 ln 2)}} {displaystyle e^{pi ^{2}/(12 }) {\displaystyle e^{\pi ^{2}/(12\ln 2)}}

e^(\pi^2/(12 ln(2)))

A086702

[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...]

3.35988566624317755317201130291892717

逆フィボナッチ定数

Ψ {displaystyle} {positu }. {\displaystyle \Psi }

∑ n = 1 ∞ 1 F n = 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + ⋯ {displaystyle \sum _{n=1}^{infty }{Thomasfrac{1}{F_{n}}={Cfrac {1}{1}}+{Cfrac {1}{1}}+{Cfrac {1}{2}}+{Cfrac {1}{3}}+{Cfrac {1}{5}}+{Cfrac {1}{8}}+{Cfrac {1}{13}}+Chedots }. {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots }

A079586

[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]

4.13273135412249293846939188429985264

2のルート e pi

2 e π { {displaystyle { {sqrt {2epi}}}} {\displaystyle {\sqrt {2e\pi }}}

2 e π { {displaystyle { {sqrt {2epi}}}} {\displaystyle {\sqrt {2e\pi }}}

二乗π

T

A019633

[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...]

6.58088599101792097085154240388648649

フローダ定数

2 e {displaystyle 2^{Copyright, E}}} {\displaystyle 2^{\,e}}

2 e {displaystyle 2^{e}}. {\displaystyle 2^{e}}

2^e

[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]

9.86960440108935861883449099987615114

円周率の2乗

π 2 { {displaystyle \pi ^{2}}}. {\displaystyle \pi ^{2}}

6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + ⋯ {\displaystyle 6sum _{n=1}^{infty }{frac {1}{n^{2}}={frac {6}{1^{2}}}+{frac {6}{2^{2}} + {frac {6}{3^{2}}} + {frac {6}{4^{2}}} + } } {discots } {frac{2} {6}{2}}{3}}{4}}{2} {2}{2}}{2}}としたとき。 {\displaystyle 6\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {6}{1^{2}}}+{\frac {6}{2^{2}}}+{\frac {6}{3^{2}}}+{\frac {6}{4^{2}}}+\cdots }

6 Sum[n=1〜∞]{1/n^2}になります。

T

A002388

[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]

23.1406926327792690057290863679485474

ゲルフォンド定数

e π { {displaystyle e^{pi }} {\displaystyle e^{\pi }}

∑ n = 0 ∞ π n n != π 1 1 + π 2 2 !+ π 3 3 !+ π 4 4 !+ ⋯ {\displaystyle \sum _{n=0}^{infty }{hrac {}pi ^{n}}{n!}}={hrac {}pi ^{1}}+{hrac {}pi ^{2}}{2!}}+{hrac {}pi ^{3}}{3!}}+{hrac {}pi ^{4}}{4!}+¥hracdots } {hrac {}pi ^{1}{1}} {} {{2}}}{1}}{1}{1}{1}{2}} {}} {}{2} {} {}{2}}+¥hracdots +¥harcdots {\displaystyle \sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}={\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2!}}+{\frac {\pi ^{3}}{3!}}+{\frac {\pi ^{4}}{4!}}+\cdots }

Sum[n=0 to ∞]{(pi^n)/n!}

T

A039661

[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]

関連ページ

オンライン書誌

  • 整数列のオンライン百科事典(OEIS)
  • サイモン・プルーフ、定数の表
  • Xavier GourdonとPascal Sebahの数字、数学定数、アルゴリズムのページ。
  • MathConstants

質問と回答

Q:数学的定数とは何ですか?


A:数学定数とは、計算において特別な意味を持つ数値のことです。

Q:数学定数の例を教えてください。
A:数学的定数の例として、円の円周と直径の比を表す"ً"があります。

Q:ًの値は常に同じですか?


A:はい、どの円でも"ً"の値は常に同じです。

Q:数学定数は積分数ですか?


A:いいえ、数学定数は通常、実数で非積分数です。

Q:数学定数はどこから来るのですか?


A:数学定数は、物理定数のように物理的な測定から来るものではありません。

AlegsaOnline.com - 2020 / 2023 - License CC3